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The zone of the action of thermal disturbances around a circular heat source on the surface of a semi-infinite 
body is estimated with the aim of using contact methods of determination of thermophysical properties of 
materials from core samples. 

Recently, contact methods of determination of thermophysical properties of materials are more and more 

extensively used in measuring practice. They are based on the behavior of the temperature field of a semi-infinite 

body under the action of a local heat source on its surface. Numerous variants of these methods, which differ in 

the scheme of account for or elimination of heat losses into the environment, and the time of measurement of the 
temperature of the body in the initial or final stage of experiments, have been proposed [1-12 ]. Methods based on 

measurement of temperature in the initial stage of heating of the material (Fo < 0.1) are of interest [10] for a 

short experiment time. However, in this case the heat capacity of the heater distorts the temperature field of the 

body, which leads to additional experimental errors. This undesirable effect can be eliminated if the stage of 

steady-state linear dependence of temperature on the parameter 1/v~- is chosen as the final stage of measurements 

[1, 12 ]. However, in geothermal studies of deep horizons of the Earth's crust using core samples, boundary effects 

can be observed in the temperature field of the sample, because of its limited size. Therefore, studies are required 

to estimate the zone of action of temperature disturbances around the heat source and to choose the necessary size 

of the heat source for the experiment time with heat losses to the environment taken into consideration. 

The calculations are based on solution of the problem on the temperature field of a semi-infinite body the 
surface of which has a heat source with a constant heat flux q and radius R [13 ]: 

O( r ,  z,  3 ) = - ~ -  0 2X/a t  

- exp (flz) eftc ( z---Y---- +flvr--~-) ] a f l 2 x / a r  fl , (1) 

where J0 and J1 are first-kind Bessel functions of the zeroth and first order; eftc = 1-ef t ;  eft, is the Gaussian 

error function. 
It is difficult to express formula (1) in explicit form. In practice, it is sufficient to study the temperature 

distribution along the central axes Oz and Or. 
At large times when z/2vr-~ < 1 for the central axis Oz(r = 0) Eq. (1) is reduced to the following series 

' 
(0, z, ~7) = ~/z 2 + R  2 - z  - -  • 
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After a certain time (rli n) of action of the heat source the terms containing ar in brackets in Eq. (2) are 

negligible in comparison with those in Eq. (1) and the temperature field becomes a linear asymptote in the 

parameter 1/v7: 

13(0, z, ~)=qR[ A s t ( z ' ; t  0) R ] 2 ~-~-~-~ ' (3) 

where Ast(z, 0) = ( ~  - z)/R is the steady-state distribution of the temperature in z a r t  ~ oo. Thus, under 

asymptotic conditions the temperature field can be expressed by a series of parallel straight lines 0 ~ f(1/v~).  The 

moment at which the temperature curves 0 ---f(1/v~-) become a linear asymptote depends on z and is expressed 

by the following relation: 

z-it n - 24aelin ( R2 + 1 
(4) 

where eli n is the permissible error of deviation of the temperature curve 9 -~ f(1/v~) from linearity. 

In a similar way it can be shown that in the central plane z -- 0, where the heat source is located, the radial 

temperature distribution tends with lime to the following linear asymptote 

9 (r,  0 ,  z ) =  q--R-R[2 Ast (r, 0) 2 Vr-~-~R , (5) 

k 
0 0  

where A~t(r, O) = f Jo(flr)J1 ~R)dfl/fl is the steady-state temperature distribution in the radial direction in the plane 
o 

of action of a circular heat source (z = 0). 

Integrals of the type of Ast(r, 0) are expressed by a combination of gamma (G)- and hypergeometric (F) 

functions: 

in the region r _< R 

As,(r ,  0 ) = F t l ;  

in the region r _> R 

2) 2 1 . r r 3r 4 5r 6 
-2' 1; ~ = 1 4R 2 64R4 256R 6 

(6) 

Ast(r,  0) = R F  . 1 .  2;  - T  = - -  1 + - - + - - + - - +  
2r ' 2 ' r 2r 8r 2 64r 4 1024r 6 . . . .  

For realization of Eq. (5) a method of a plane probe is suggested for measuring thermophysical properties 

of a mass of permafrost ground and rock [7, 12]. Its essence can be described as follows. For some time the 

temperature of the probe is measured, and these measurements are used to plot O versus the parameter 1/v~, and 

the linear asymptote is isolated in the plot. From the intersection points of the asymptote with the coordinate axes 

it is possible to find the thermal conductivity and thermal diffusivity of the material In particular, 

2 -  8qR 2ins ' (8) 

where 0st is the steady-state increase in the average temperature of the probe determined by the intersection of the 

linear asymptote with the ordinate; 2ins is the thermal conductivity of the thermal insulation of the instrument. 

For the case of samples of finite dimensions, we will investigate their minimal admissible dimensions, which 

ensure reliable operation of the method described above. For this purpose we will estimate the zone of action of 

the heat source, both along the radius (rac t) and the height (Zac0, beyond which during the experiment the 

temperature disturbance relative to a steady-state increase in the temperature of the center of the heater 0st(0, 0) 
does not exceed the admissible error eact: 
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Fig. 1. Zact/R 
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vs. eac t at elin = 0.05 and n = I0. 

0 (ract, O, rexp) _ 0 (0 ,  Zac t , ~exp) 
east = % (0 ,  O) - % (0 ,  O) ' 

(9) 

where ~exp = "Olin + AT is the duration of the experiment; r is the time of the linear section of the temperature curve 

in the parameter 1/x/~- sufficient for linear asymptote to be drawn reliably over the experimental points in the plot 

0 --, f(1/vr~-). 

Formula (9) expreass a strict experimental condition. In the case of a semi-infinite body the theory of the 

method does not assume any restrictions for the temperature disturbance around the heater. When the body studied 

has finite dimensions any increase in the temperature at the interface will bring about distortion of the behavior 

of the temperature at the point of measurement. 

Calculation of 0(Zact, 0, ~:exp) according to Eq. (2) gives 

( 2 ) [ Z a c t  Zact r 
eact = 4 _ _  1 + 

R 2 ) R 2 ~ff-~exp X 

1 1 + 2zact 

24arex p - - ~  

3Zact 
X 1 + - 7 +  R4 ) 

R 4 
+ 

22 
480a ~-exp 

• 

#OO ~ O (10) 

Hence, with the radius of the heater R, thermal diffusivity of the sample a, duration of the experiment 

Texp, and admissible deviation of the temperature eact preset, the necessary dimension of the sample/sam = Zact can 
be estimated. With condition (9) satisfied the theory of the method [12 ] is not actually violated and the errors in 

determination of the thermophysical properties of a rock sample are only caused by instrumental errors of 

measuring the parameters in the calculation formula, namely, temperature, time, and heater current. When the 

theory is violated, the plot of z9 versus 1/v~ shows deviation from linearity. 
The following example will be considered for illustration. Let the duration of the experiment be n times 

longer than the time Tlin of the start of the linear section in the plot of 0 versus 1/v~-. It is assumed that this ensures 

that the linear asymptote be drawn over the experimental points. For this time the change in the temperature on 

the boundary of the sample (/sam = Zact) should not exceed the instrumental error in measurement of eact- We have 

l~ex p = nl'li n = nR2/24aelin. Then, (2) 
Zact Zact 1.38 ~ • 

eact = 1 + - ~ -  R vrnn 
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t (212 n 24/ t  x 1 - elin 1 + 2zact 3Zact 3Zact (11) 
n ~ + - - - T - n  1 + - - ~ + ~  - . . .  . 

This relation is shown in Fig. 1 for n = 10 and eli n = 0.05. If we take only eact = 0.02, then it should be that 

Zact/R > 5 or/sam > 5R. For example, with a heater  radius of 0.5 cm, the height of the sample should be at least 

2.5 cm for experiment time rex p -> lOrlin. It can be expected that this is also valid for ract/R. 

A maximum zone of action is achieved under steady-state thermal conditions (~- --> oo): 

1 + eact 

max 2tact 

tac t ) 1 (13) 

--R-- m ax -  2tact" 

For example, at tact = 0.02, we have (Zact)ma x = (racOmax = 25R. 

Now, we will s tudy the heat losses from the heater through the thermal insulation of the device via the 

leads of the thermocouple and the heater.  The  estimation is based on the maximum heat loss that occurs under  

steady-state thermal conditions and is equal to 

,~.ldSld0st (0 ,  0) (14) 
qh.1 = qins + qld = qins + lldSh 

where Ost(O, O) is the s teady-state  increase in the temperature of the heater; S h and Sld a r e  the surface areas of 

the heater  and the cross-section of the leads, respectively; the subscripts "ins" and "ld" refer  to the thermal 

insulation and leads. 

In contact heating of a two-layer medium (thermal insulation + the body studied),  the following relations 

are valid 

qR (15) 
0st (0 ,  O) - ;t + 2in s ' 

q2ins (16) 
qins - ,~ + ~'ins " 

With account of expressions (15) and (16), we obtain from Eq. (14) 

q 21dR2d (17) 

It is necessary that in comparison with the heat flux of the heater, the heat loss not exceed the admissible error 

eh.l: qh.1/q < eh.1. Then,  

tin s + tld < eh. 1 , (18) 

where tin s = )].ins/2ins + ,~ and eld = ~.lde2d/(2ins + 2)/ldR are the fractions of the heat losses from the heater  through 

the thermal insulation and leads, respectively. 

Thus,  it is found that the optimal experimental conditions are determined by the dimensions of the heater. 

For  example,  with a hea te r  with small dimensions, the necessary (linear) heating starts more rapidly, t h e  

experimental time is reduced, the zone of action of thermal disturbances of the heat source becomes more narrow, 

the boundary effects due to a limited size of the sample are minimized, and distortion of the temperature field of 
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the sample is decreased. However, the dimensions of the heater cannot be too small, since in this case it will only 

generate heat for heat losses via the leads of the device. 

Therefore, it is necessary to determine the minimum permissible dimensions of the heater more accurately. 

They can be determined from Eq. (18) on the basis of the preset value of eld: 

AIOR2cl (19) 
Rmi n >- eld/ld 0~ins + ~.) ' 

where e l d  = t h . l  - -  t i n s -  

The results of the present studies can be useful in developing express methods for measurement of 

thermophysical properties of rock samples and other materials. 

N O T A T I O N  

r, z, instantaneous coordinates; ~-, time; T ( r ,  z, r), temperature distribution of a semi-infinite body in space 

at any time; TO, initial temperature of the body; O(r, z, ~) = T(r,  z, T) - TO, excessive temperature of the body; ;t, 
thermal conductivity; a, thermal diffusivity; q, heat flux; Sh, area of the heater; R, radius of the heater; e, 

admissible error. 
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